Click here to sign in with or
by Bob Yirka , Phys.org
A team of researchers from the Ohio State University and the University of Virginia has found a way to use metals with a high thermoelectric power factor to create efficient all-solid-state active coolers. In their paper published in the journal Physical Review Applied, the group describes their new approach to cooling electronic devices and how well it worked.
Active cooling systems, by definition, are cooling systems that use electricity to cool a hot or warm device down to ambient temperatures. In this new effort, the researchers have found that such systems could benefit from the use of special metals. They also coined a new term to use as a metric—effective thermal conductivity. In active cooling systems, heat-carrying charge carriers flow from the hot side of an object to the cooler side when electricity is applied—effective thermal conductivity is a number that is calculated by adding a system's active thermal conductivity (when electricity is applied) to its passive conductivity (when the electricity is off).
As the researchers note, most commercial cooling systems have been optimized over the years for use in refrigeration applications, and are thus not ideal for active cooling situations such as removing heat from a computer. They note also that engineers typically use a measure called the thermoelectric figure of merit (zT) to describe the efficiency of such systems. But again, they suggest it is not a good metric for active cooling systems.
To improve the efficiency of such systems, the researchers looked for materials that had better-than-conventional thermal conductivity. They found two that showed promise: Kondo-effect metals and magnon-drag metals. They built a Peltier cooler using the metals (cobalt and cerium-palladium) and set it between various hot and cold materials, and then tested it to see how efficient it was at removing the heat on the hot side and sending it to the cold side.
The researchers report that when they applied five amps to the device, it pulled out approximately 100 more milliwatts of heat than it did when no power was applied. In terms of thermal conductivity, the device was measured at 40 W/mK in passive mode and reached 1000 W/mK with some heat differentials. Explore further New material to pave the way for more efficient electronic devices More information: M.J. Adams, et al. Active Peltier Coolers Based on Correlated and Magnon-Drag Metals, Physical Review Applied (2019). DOI: 10.1103/PhysRevApplied.11.054008
More from Physics Forums | Science Articles, Homework Help, Discussion
Use this form if you have come across a typo, inaccuracy or would like to send an edit request for the content on this page. For general inquiries, please use our contact form. For general feedback, use the public comments section below (please adhere to guidelines).
Please select the most appropriate category to facilitate processing of your request
Thank you for taking time to provide your feedback to the editors.
Your feedback is important to us. However, we do not guarantee individual replies due to the high volume of messages.
Your email address is used only to let the recipient know who sent the email. Neither your address nor the recipient's address will be used for any other purpose. The information you enter will appear in your e-mail message and is not retained by Phys.org in any form.
Get weekly and/or daily updates delivered to your inbox. You can unsubscribe at any time and we'll never share your details to third parties.
Medical research advances and health news
The latest engineering, electronics and technology advances
The most comprehensive sci-tech news coverage on the web
This site uses cookies to assist with navigation, analyse your use of our services, collect data for ads personalisation and provide content from third parties. By using our site, you acknowledge that you have read and understand our Privacy Policy and Terms of Use.